本番中に解き切れず。
https://codeforces.com/contest/1717/problem/F
問題
N要素の整数列S,Aと、整数ペアがM個与えられる。
初期状態で値が0のN要素の整数列Bがある。
各ペア(u,v)に対し、B[u]とB[v]のどちらかをインクリメント、もう片方をデクリメントすることを考える。
S[i]=1であるiに対し、B[i]=A[i]となるようにしたい。
可能なら一例を示せ。
解法
Aの値を線形に変換し、B[u]とB[v]のどちらかをインクリメントする問題とする。
すると、i番目の辺からuとvのどちらかに1のフローを流す、最大フロー問題に置き換えることができる。
int N,M; int S[101010]; int A[101010],D[101010]; int U[101010],V[101010]; template<class V> class MaxFlow_dinic { public: struct edge { int to,reve;V cap;}; static const int MV = 551100; vector<edge> E[MV]; int itr[MV],lev[MV],mincut[MV]; //1ならsource側 void add_edge(int x,int y,V cap,bool undir=false) { E[x].push_back((edge){y,(int)E[y].size(),cap}); E[y].push_back((edge){x,(int)E[x].size()-1,undir?cap:0}); } void bfs(int cur) { MINUS(lev); queue<int> q; lev[cur]=0; q.push(cur); while(q.size()) { int v=q.front(); q.pop(); FORR(e,E[v]) if(e.cap>0 && lev[e.to]<0) lev[e.to]=lev[v]+1, q.push(e.to); } } V dfs(int from,int to,V cf) { if(from==to) return cf; for(;itr[from]<E[from].size();itr[from]++) { edge* e=&E[from][itr[from]]; if(e->cap>0 && lev[from]<lev[e->to]) { V f=dfs(e->to,to,min(cf,e->cap)); if(f>0) { e->cap-=f; E[e->to][e->reve].cap += f; return f; } } } return 0; } V maxflow(int from, int to) { V fl=0,tf; while(1) { bfs(from); if(lev[to]<0) break; ZERO(itr); while((tf=dfs(from,to,numeric_limits<V>::max()))>0) fl+=tf; } //最小カット復元 ZERO(mincut); queue<int> Q; mincut[from]=1; Q.push(from); while(Q.size()) { int cur=Q.front(); Q.pop(); FORR(e,E[cur]) if(e.cap>0&&mincut[e.to]==0) mincut[e.to]=1, Q.push(e.to); } return fl; } }; MaxFlow_dinic<ll> mf; void solve() { int i,j,k,l,r,x,y; string s; cin>>N>>M; FOR(i,N) cin>>S[i]; FOR(i,N) cin>>A[i]; FOR(i,M) { cin>>U[i]>>V[i]; U[i]--,V[i]--; D[U[i]]++; D[V[i]]++; mf.add_edge(300000,i,1); mf.add_edge(i,100000+U[i],1); mf.add_edge(i,100000+V[i],1); } int sum=M; FOR(i,N) if(S[i]) { if((A[i]+D[i])%2||abs(A[i])>D[i]) { cout<<"NO"<<endl; return; } x=(A[i]+D[i])/2; mf.add_edge(100000+i,300002,x); sum-=x; } if(sum<0) { cout<<"NO"<<endl; return; } mf.add_edge(300001,300002,sum); FOR(i,N) if(S[i]==0) mf.add_edge(100000+i,300001,M); x=mf.maxflow(300000,300002); if(x!=M) { cout<<"NO"<<endl; } else { cout<<"YES"<<endl; FOR(i,M) { FORR(e,mf.E[i]) if(e.to<=200000&&e.cap==1) cout<<e.to-99999<<" "; FORR(e,mf.E[i]) if(e.to<=200000&&e.cap==0) cout<<e.to-99999<<endl; } } }
まとめ
問題の言い換えに気付けばあとはすぐ。