うーむ。
https://yukicoder.me/problems/no/2747
問題
整数N,Kが与えられる。
1~NのPermutation Pに対し、隣接要素の差の絶対値のK乗和を考える。
P全通り(N!通り)に対しその総和を998244353で割った余りを求めよ。
解法
式変形するととなる。
Nが大きいので、(N-1)!を998244353で割った余りは、埋め込みで求めておこう。
i^Kの部分は、最初のK+1項を求めればラグランジュ補間で求めることができる。
int N,K; const ll mo=998244353; /* ll cur=1; _P("{%d,%d},\n",0,1); for(i=1;i<=1010000000;i++) { cur=cur*i%mo; if(i%10000000==0) _P("{%d,%d}\n",(int)i,(int)cur); } */ ll fact(ll v) { static int data[][2]= { {0,1}, {10000000,295201906}, {20000000,160030060}, {30000000,957629942}, {40000000,545208507}, {50000000,213689172}, {60000000,760025067}, {70000000,939830261}, {80000000,506268060}, {90000000,39806322}, {100000000,808258749}, {110000000,440133909}, {120000000,686156489}, {130000000,741797144}, {140000000,390377694}, {150000000,12629586}, {160000000,544711799}, {170000000,104121967}, {180000000,495867250}, {190000000,421290700}, {200000000,117153405}, {210000000,57084755}, {220000000,202713771}, {230000000,675932866}, {240000000,79781699}, {250000000,956276337}, {260000000,652678397}, {270000000,35212756}, {280000000,655645460}, {290000000,468129309}, {300000000,761699708}, {310000000,533047427}, {320000000,287671032}, {330000000,206068022}, {340000000,50865043}, {350000000,144980423}, {360000000,111276893}, {370000000,259415897}, {380000000,444094191}, {390000000,593907889}, {400000000,573994984}, {410000000,892454686}, {420000000,566073550}, {430000000,128761001}, {440000000,888483202}, {450000000,251718753}, {460000000,548033568}, {470000000,428105027}, {480000000,742756734}, {490000000,546182474}, {500000000,62402409}, {510000000,102052166}, {520000000,826426395}, {530000000,159186619}, {540000000,926316039}, {550000000,176055335}, {560000000,51568171}, {570000000,414163604}, {580000000,604947226}, {590000000,681666415}, {600000000,511621808}, {610000000,924112080}, {620000000,265769800}, {630000000,955559118}, {640000000,763148293}, {650000000,472709375}, {660000000,19536133}, {670000000,860830935}, {680000000,290471030}, {690000000,851685235}, {700000000,242726978}, {710000000,169855231}, {720000000,612759169}, {730000000,599797734}, {740000000,961628039}, {750000000,953297493}, {760000000,62806842}, {770000000,37844313}, {780000000,909741023}, {790000000,689361523}, {800000000,887890124}, {810000000,380694152}, {820000000,669317759}, {830000000,367270918}, {840000000,806951470}, {850000000,843736533}, {860000000,377403437}, {870000000,945260111}, {880000000,786127243}, {890000000,80918046}, {900000000,875880304}, {910000000,364983542}, {920000000,623250998}, {930000000,598764068}, {940000000,804930040}, {950000000,24257676}, {960000000,214821357}, {970000000,791011898}, {980000000,954947696}, {990000000,183092975}, {1000000000,0}, {1010000000,0} }; if(v>=mo) return 0; int cur=v/10000000*10000000; ll ret=data[cur/10000000][1]; for(int i=cur+1;i<=v;i++) ret=ret*i%mo; return ret; } ll modpow(ll a, ll n = mo-2) { ll r=1;a%=mo; while(n) r=r*((n%2)?a:1)%mo,a=a*a%mo,n>>=1; return r; } ll lagrange(vector<ll>& P,ll x) { const int NUM_=2000003; static ll fact[NUM_+1],factr[NUM_+1],inv[NUM_+1]; if (fact[0]==0) { inv[1]=fact[0]=factr[0]=1; for (int i=2;i<=NUM_;++i) inv[i] = inv[mo % i] * (mo - mo / i) % mo; for (int i=1;i<=NUM_;++i) fact[i]=fact[i-1]*i%mo, factr[i]=factr[i-1]*inv[i]%mo; } int i; int N=P.size(); if(0<=x&&x<N) return P[x]; vector<ll> R={1},F={1}; for(i=N-1;i>=1;i--) R.push_back(R.back()*((x-i)%mo)%mo); ll p=1; ll ret=0; FOR(i,N) { ll a=p*R.back()%mo*factr[i]%mo; if((N-1-i)%2==0) a=a*factr[N-1-i]%mo; else a=a*(mo-factr[N-1-i])%mo; (ret+=a*P[i])%=mo; R.pop_back(); (p*=(x-i)%mo)%=mo; } return ret%mo; } void solve() { int i,j,k,l,r,x,y; string s; cin>>N>>K; ll ret=fact(N-1)*2; vector<ll> F={0},G={0}; for(i=1;i<=K+1;i++) F.push_back((F.back()+modpow(i,K))%mo); for(i=1;i<=K+2;i++) G.push_back((G.back()+modpow(i,K+1))%mo); ll a=lagrange(F,N); ll b=lagrange(G,N); ret=ret*(N*a%mo+mo-b)%mo; cout<<ret<<endl; }
まとめ
ラグランジュ補間をライブラリ化してたのでコードが短くなった。